Targeting of human eNOS promoter to the Hprt locus of mice leads to tissue-restricted transgene expression.
نویسندگان
چکیده
Phenotypic heterogeneity of the endothelium arises from cell type-specific differences in gene expression. An understanding of the mechanisms that underlie differential gene expression would provide important insight into the molecular basis of vascular diversity. In standard transgenic assays, multiple copies of heterologous DNA cassettes are randomly integrated into the mouse genome, resulting in significant line-to-line variation in expression. To overcome these limitations, we have targeted a single copy of a transgene that contains 1,600 bp of the human endothelial nitric oxide synthase (eNOS) promoter coupled to the LacZ reporter gene to the X-linked hypoxanthine phosphoribosyltransferase (Hprt) locus of mice by homologous recombination. The transgene was inserted in either of the orientations relative to that of the Hprt gene. In mice derived from multiple embryonic stem (ES) cell clones, the expression pattern was limited to a subset of endothelial cells, cardiomyocytes, and vascular smooth muscle cells. These findings suggest that Hprt locus targeting is a feasible tool for studying endothelial cell-restricted gene regulation.
منابع مشابه
Temporal, spatial and tissue-specific expression of a myogenin-lacZ transgene targeted to the Hprt locus in mice.
A lacZ transgene, expressed by the myogenin promoter, was introduced into the mouse hypoxanthine phosphoribosyltransferase (Hprt) locus by gene targeting in embryonic stem cells. Embryos between E10.5-E18.5 days were analyzed for expression of the transgene after staining for beta-galactosidase activity. Transgene expression was restricted to the skeletal muscle lineages reflecting a similar te...
متن کاملHprt-targeted transgenes provide new insights into smooth muscle-restricted promoter activity.
Mouse telokin and SM22alpha promoters have previously been shown to direct smooth muscle cell-specific expression of transgenes in vivo in adult mice. However, the activity of these promoters is highly dependent on the integration site of the transgene. In the current study, we found that the ectopic expression of telokin promoter transgenes could be abolished by flanking the transgene with ins...
متن کاملTargeting the Hprt locus in mice reveals differential regulation of Tie2 gene expression in the endothelium.
To study the in vivo expression of the murine Tie2 gene, we have targeted the hypoxanthine phosphoribosyltransferase (Hprt) gene locus to generate two single-copy transgenic mice: T1, containing the 2,100-bp Tie2 promoter upstream from the beta-galactosidase (LacZ) gene, and T5, which also included an enhancing element originating from the first intron of the Tie2 gene. Comparing T1 and T5 embr...
متن کاملAppropriate tissue- and cell-specific expression of a single copy human angiotensinogen transgene specifically targeted upstream of the HPRT locus by homologous recombination.
Development of experimental models by genetic manipulation in mice has proven to be very useful in determining the significance of particular genes in the development of or susceptibility to hypertension. Advances in molecular genetics, transgenic mouse technology, and physiological measurements in mice provided an opportunity to go a step further and develop models to analyze the physiological...
متن کاملTargeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system.
The tet-inducible system has been widely used to achieve conditional gene expression in genetically modified mice. To alleviate the frequent difficulties associated with recovery of relevant transgenic founders, we tested whether a controlled strategy of transgenesis would support reliable cell-specific, doxycycline (Dox)-controlled transgene expression in vivo. Taking advantage of the potent h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2000